光學諧振腔的穩(wěn)定條件是什么?
在光學諧振腔中,光在兩個反射鏡之間不斷地來回反射,因此通常要求諧振腔保證光在腔內來回反射過程中不會離開諧振腔。滿足這一要求的型腔稱為穩(wěn)定型腔。討論光在諧振腔中的行為,可以通過光在腔內往返傳輸?shù)木仃嚤硎緛碜C明:對于腔長為L、鏡面曲率半徑為R1和R2的諧振腔,穩(wěn)定條件是:

0<(1-L/R1)(1-L/R2)<1或(1-L/R1)=(1-L/R2) ⑴
引入型腔幾何參數(shù)因子,若令
\n g1=1-L/R1 ⑵
g2=1-L/R2 ⑶
則諧振腔的穩(wěn)定條件可表示為: 0
也就是說,當腔體的幾何參數(shù)滿足上述條件時,腔體內的近軸光在腔體內來回多次,而不會橫向逸出腔外,我們說諧振腔處于穩(wěn)定工作狀態(tài)。通常稱式⑷通常稱為諧振腔的穩(wěn)定性判據(jù)。由于存在g1g2>0的條件,對于穩(wěn)定的諧振腔結構,g1和g2具有相同的符號。如果它們有不同的跡象,則腔不穩(wěn)定。
延伸閱讀:
一.光學諧振腔又稱光腔或激光諧振腔,是激光技術中的關鍵部件之一。它是一種物理結構,旨在讓光波在其中反復來回反射,并通過這種反饋機制實現(xiàn)特定頻率光波的共振和增強。在激光器中,光學諧振腔通常由兩個或多個高反射鏡(至少一個是部分透射的)組成。這些鏡子相互平行放置或按照一定的曲率半徑形成一個封閉的空間,它們連接到激活介質(例如激光晶體、氣體放電管或半導體材料等)。
二.在諧振腔內,光波受到激活介質增益的影響后,在滿足諧振條件時會在腔內不斷地來回傳播并積累能量。當增益超過損耗時,就會發(fā)生激光振蕩。光學諧振腔的功能包括:
1.選擇性放大:只對光波的特定模式(橫模和縱模)提供正反饋,使其在腔體內繼續(xù)振蕩并被放大。
2.控制激光特性:決定輸出激光束的質量,如單色性(即頻率穩(wěn)定性)、方向性和光束形狀(如高斯光束)等。
3.模式鎖定:保證激光器工作在單一穩(wěn)定模式,減少多縱模工作引起的光譜展寬。
▍最新資訊
-
準直儀與工業(yè)望遠鏡在精密光學測量的應用分析
精密制造、航空航天、光學工程等高端等領域,測量精度直接決定了產品性能與技術突破的邊界。光學測量技術憑借非接觸、高精準、抗干擾性強的獨特優(yōu)勢,成為現(xiàn)代工業(yè)與科研不可或缺的核心手段。其中,準直儀與工業(yè)望遠鏡作為兩類關鍵的光學測量儀器,分別承擔著光束準直與遠距離目標檢測的核心任務,其原理設計與應用實踐共同構筑了精密測量體系的重要基礎。本文將系統(tǒng)解析準直儀與工業(yè)望遠鏡的結構組成、工作機制及應用價值,探尋其在高端制造與科研領域占據(jù)核心地位的深層邏輯。
2026-01-09
-
電子自準直儀光學如何讓角度測量達千分之一角秒精度?
在光學儀器的運作體系中,光線的傳輸與偏轉控制是決定設備性能的核心要素。當光線需穿過多個光學元件并完成特定偏轉時,保持精準的角度定位就成為技術實現(xiàn)的關鍵。傳統(tǒng)角度測量依賴操作員的目視檢查,受經驗、注意力等主觀因素影響較大,難以滿足高精度場景的需求。而電子自準直儀的出現(xiàn),徹底改變了這一現(xiàn)狀,為光學角度測量帶來了兼具精準性與可靠性的技術革新。
2026-01-09
-
飛秒激光直寫技術的應用——透明材料三維周期性光子結構的創(chuàng)新
飛秒激光直寫技術(FLDW)作為微納制造領域的革命性手段,憑借其高精度、高效率的三維加工能力,突破了傳統(tǒng)制造技術在透明材料光子結構制備中的局限。本文系統(tǒng)闡述了FLDW的技術特性與核心優(yōu)勢,深入解析了光學非線性調制和折射率調控的理論基礎,詳細介紹了三維非線性光子晶體(3DNPCs)在非線性光學、量子光學、光束整形及全息成像等領域的應用成果,最后分析了當前技術面臨的挑戰(zhàn)并展望了未來發(fā)展方向,為該領域的進一步研究與產業(yè)化應用提供參考
2026-01-09
-
干涉測量技術的原理、前沿突破與應用賦能
干涉測量作為現(xiàn)代精密測量領域的核心技術之一,憑借其納米級測量精度和廣泛的適配性,在科研探索、工業(yè)生產、民生保障等多個領域發(fā)揮著不可替代的作用。近年來,我國在該領域的科研創(chuàng)新與技術應用持續(xù)取得突破,為相關行業(yè)發(fā)展注入強勁動力。本文將系統(tǒng)闡述干涉測量技術的核心原理、前沿科研成果、光源選型要求及優(yōu)質產品支撐,展望其應用前景。
2026-01-09
